دوره 8، شماره 29 - ( 7-1396 )                   سال8 شماره 29 صفحات 72-37 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشگاه الزهرا ، musa_khosroshahi@yahoo.com
چکیده:   (4805 مشاهده)
علاوه بر سیاست‏های قیمتی، سیاست‏های غیرقیمتی همانند بهبود کارایی در مصرف حامل‏های انرژی می‏توانند نقش موثری در کاهش مقدار مصرف انرژی و افزایش استفاده بهینه از انرژی در کشور داشته باشند. طبق ادبیات اقتصاد انرژی، بهبود کارایی در مصرف انرژی توام با اثرات بازگشتی هستند که در آن عایدی‌های انتظاری ناشی از بهبود در کارایی مصرف انرژی تا حدودی خنثی می‌شوند. هدف مقاله ارزیابی آثار اقتصادی ناشی از بهبود کارایی در مصرف حامل‏های انرژی (بنزین، گازوئیل و برق) به‌عنوان سیاستی غیرقیمتی است. برای این منظور از مدل تعادل عمومی قابل محاسبه مبتنی بر ماتریس حسابداری احتماعی استفاده شده است. نتایج نشان می‏دهد بهبود 10 درصد در کارایی مصرف حامل‏های انرژی باعث می‏شود تا بیشترین اثرات بازگشتی (مربوط به بنزین) در بخش حمل‏ونقل با 8/29 درصد، بیشترین اثرات بازگشتی (مربوط به گازوئیل) در بخش حمل‏ونقل با 7/24 درصد و بیشترین اثرات بازگشتی (مربوط به برق) در بخش سایر خدمات با 5/24 درصد رخ دهد. اثرات بازگشتی مربوط به بخش خانوار نیز در مورد بنزین، گازوئیل و برق به ترتیب برابر با 1/23، 8/17 و 9/27 درصد می‏باشند. همچنین بهبود 10 درصد در کارایی مصرف حامل‌های انرژی باعث می‏شود تا بیشترین افزایش در سطح تولید بخش‏های اقتصادی مربوط به بنزین، گازوئیل و برق به ترتیب در بخش‏های «حمل‏ونقل»، «حمل‏ونقل» و «سایر خدمات» با 62/0، 51/0 و 32/0 درصد باشند. علاوه بر این، بهبود 10 درصد در کارایی مصرف بنزین، گازوئیل و برق باعث می‏شود تا تولید ناخالص داخلی به ترتیب معادل 17/0، 15/0 و 11/0 درصد با افزایش همراه باشد.
متن کامل [PDF 4390 kb]   (1209 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: انرژی، منابع و محیط زیست
دریافت: 1396/2/19 | پذیرش: 1397/9/5 | انتشار: 1396/9/25

فهرست منابع
1.  AlShehabi, O. (2013), Modelling energy and labour linkages: A CGE approach with an application to Iran, Economic Modelling, 35. [DOI:10.1016/j.econmod.2013.06.047]
2.  Asgari, M. (2004), Applied General Equilibrium Model based on Social Accounting Matrix, Iranian Economic Research Center, Faculty of Economics Allameh Tabataba'i University
3.  Barker, T., Ekins, P. and Foxon, T. (2007), The macro-economic rebound effect and the UK economy, Energy Policy, 35, 4935-4946. [DOI:10.1016/j.enpol.2007.04.009]
4.  Bhattacharyya, S. C. (1996), Applied General Equilibrium Models for Energy Studies: A Survey. Energy Economics 18: 145-164. [DOI:10.1016/0140-9883(96)00013-8]
5.  Devarajan, S. (1988), Lecture Notes on Computable General Equilibrium Models, John F. Kennedy School of Government, Harvard University, Mimeo, Processed.
6.  EIA, Energy Information Administration.
7.  Energy Balance Sheet (1393), Ministry of Energy.
8.  Freire, J. (2011), Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households, Ecological Modelling, 223, 32-40. [DOI:10.1016/j.ecolmodel.2011.09.001]
9.  Grepperud, S. and Rasmussen, I. (2004), A General Equilibrium Assessment of Rebound Effects, Energy Economics, 26, 261-282. [DOI:10.1016/j.eneco.2003.11.003]
10.  Hanley, N,. McGregor, P., Swales, K. and Turner, K. (2009), Do Increases in Energy Efficiency Improve Environment Quality and Sustainability, Ecological Economics, 68, 692-709. [DOI:10.1016/j.ecolecon.2008.06.004]
11.  Hertwich, E. (2005), Consumption and the Rebound Effect: An Industrial Ecology Perspective, Journal of Industrial Ecology, Vol. 9, No. 1-2. [DOI:10.1162/1088198054084635]
12.  https://www.jodidata.org/
13.  Jensen, J. and Tarr, D. (2002), Trade, Foreign Exchange, and Energy Policies in the Islamic Republic of Iran: Reform Agenda, Economic Implications, and Impact on the Poor, World Bank.
14.  Khoshkalam Khosroshahi, M., Jahangard, E. and Abedian, M. (2015), Improving the efficiency of gasoline consumption and its rebound effects in various economic activities, Quarterly of Energy Economics review, Vol. 10, No. 44, PP 37-63.
15.  Khiabani, N. (2008), A computable general equilibrium model for assessing the rise in the price of all energy carriers in Iran, Quarterly of Energy Economics Review, Vol. 10, No, 16, PP. 1-34.
16.  Kemfert, C. (1998), Estimated Substitution Elasticity's of a Nested CES Production Function Approach for Germany, Energy Economics, 20, 249-264. [DOI:10.1016/S0140-9883(97)00014-5]
17.  Lofgren, H., R. Harris, and Sh. Robinson (2001), A Standard Computable General Equilibrium (CGE) Model in GAMS, International Food Policy Research Institute, Washington, D.C.
18.  Lin, B., Li, J. (2014), The rebound effect for heavy industry: Empirical evidence from China, Energy Policy, 74(C), 589-599. [DOI:10.1016/j.enpol.2014.08.031]
19.  Lu, Y., Liu, Y. and Zhou, M. (2016), Rebound Effect of Improved Energy Efficiency for Different Energy Types: A General Equilibrium Analysis for China, CAMA Working Paper 38/2016. [DOI:10.2139/ssrn.2799474]
20.  Manzoor, D., Agababaie, E. and Hagigi, I. (2010), Analyzing the Rebound Effects Caused by Improving Electricity Efficiency in Iran: A Computable General Equilibrium Model, Quarterly of Energy Economics review, Vol. 8, No. 28, PP 1-23.
21.  National Accounts, Central bank of Iran.
22.  Thomas, B. and Azevedo, I. (2013), estimating direct and indirect rebound effects for U.S. households with input-output analysis. Part 2: Simulation, Ecological Economics, 86, 188-198. [DOI:10.1016/j.ecolecon.2012.12.002]
23.  www.eia.gov/
24.  World Development Indicators, World Bank.

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.